DGIST 김민수 교수팀, 기존 데이터 처리 기술 한계를 넘어서는 새로운 기술 개발

2019.10.01

DGIST 정보통신융합전공 김민수 교수팀이 기존 기술들보다 최대 14배나 더 빠르고, 100배 더 많은 데이터를 처리할 수 있는 ‘DistME(Distributed Matrix Engine) 기술’을 개발하였다. 향후 빅데이터 처리가 필요한 기계학습 분야나 대규모 데이터를 분석하는 산업분야에 활용될 것으로 기대가 높다. 

김민수 교수팀이 개발한 DistME 기술은 CuboidMM을 GPU와 결합해 처리속도를 향상시킨 것으로, ScaLAPACK과 SystemML보다 각각 6.5배, 14배 더 빠르고 SystemML보다 100배 이상 더 큰 행렬 데이터 분석이 가능하다. 따라서 향후 온라인 쇼핑몰, SNS를 포함한 큰 규모의 데이터를 처리가 필요한 여러 분야에서 기계학습을 적용할 수 있는 새로운 가능성을 열 것으로 보인다.

DGIST 정보통신융합전공 김민수 교수는 “최근 세계적으로 각광받는 기계학습 기술은 행렬형태의 빅데이터 분석 속도와 분석 처리 규모면에서 한계가 있었다”며 “이번에 개발한 정보처리 기술은 그 한계를 극복할 수 있는 기술로, 기계학습 뿐만 아니라 광범위한 과학기술 데이터 분석 응용에 유용하게 활용될 것으로 기대된다”고 말했다.

이번 연구 결과는 DGIST 정보통신융합전공 한동형 박사과정생이 제1저자로 참여했으며, 네덜란드 암스테르담에서 열린 데이터베이스 분야의 세계 최고 권위 학술대회인 ACM SIGMOD 2019에 발표됐다.

 

보도자료:

https://www.edaily.co.kr/news/read?newsId=01908966622551240&mediaCodeNo=257&OutLnkChk=Y

https://www.dgist.ac.kr/kr/html/sub06/060102.html?mode=V&no=865bd05b5afd40d1ffdf2e2e1194a85c&GotoPage=2